Fixed some indentations and uploaded slides

This commit is contained in:
Frederik Vanggaard 2016-04-06 18:57:16 +02:00
parent 8e051c51d7
commit f31ab9f392
5 changed files with 749 additions and 4 deletions

370
EmptySketch/OPC.pde Executable file
View File

@ -0,0 +1,370 @@
/*
* Simple Open Pixel Control client for Processing,
* designed to sample each LED's color from some point on the canvas.
*
* Micah Elizabeth Scott, 2013
* This file is released into the public domain.
*/
import java.net.*;
import java.util.Arrays;
public class OPC implements Runnable
{
Thread thread;
Socket socket;
OutputStream output, pending;
String host;
int port;
int[] pixelLocations;
byte[] packetData;
byte firmwareConfig;
String colorCorrection;
boolean enableShowLocations;
OPC(PApplet parent, String host, int port)
{
this.host = host;
this.port = port;
thread = new Thread(this);
thread.start();
this.enableShowLocations = true;
parent.registerMethod("draw", this);
}
// Set the location of a single LED
void led(int index, int x, int y)
{
// For convenience, automatically grow the pixelLocations array. We do want this to be an array,
// instead of a HashMap, to keep draw() as fast as it can be.
if (pixelLocations == null) {
pixelLocations = new int[index + 1];
} else if (index >= pixelLocations.length) {
pixelLocations = Arrays.copyOf(pixelLocations, index + 1);
}
pixelLocations[index] = x + width * y;
}
// Set the location of several LEDs arranged in a strip.
// Angle is in radians, measured clockwise from +X.
// (x,y) is the center of the strip.
void ledStrip(int index, int count, float x, float y, float spacing, float angle, boolean reversed)
{
float s = sin(angle);
float c = cos(angle);
for (int i = 0; i < count; i++) {
led(reversed ? (index + count - 1 - i) : (index + i),
(int)(x + (i - (count-1)/2.0) * spacing * c + 0.5),
(int)(y + (i - (count-1)/2.0) * spacing * s + 0.5));
}
}
// Set the locations of a ring of LEDs. The center of the ring is at (x, y),
// with "radius" pixels between the center and each LED. The first LED is at
// the indicated angle, in radians, measured clockwise from +X.
void ledRing(int index, int count, float x, float y, float radius, float angle)
{
for (int i = 0; i < count; i++) {
float a = angle + i * 2 * PI / count;
led(index + i, (int)(x - radius * cos(a) + 0.5),
(int)(y - radius * sin(a) + 0.5));
}
}
// Set the location of several LEDs arranged in a grid. The first strip is
// at 'angle', measured in radians clockwise from +X.
// (x,y) is the center of the grid.
void ledGrid(int index, int stripLength, int numStrips, float x, float y,
float ledSpacing, float stripSpacing, float angle, boolean zigzag)
{
float s = sin(angle + HALF_PI);
float c = cos(angle + HALF_PI);
for (int i = 0; i < numStrips; i++) {
ledStrip(index + stripLength * i, stripLength,
x + (i - (numStrips-1)/2.0) * stripSpacing * c,
y + (i - (numStrips-1)/2.0) * stripSpacing * s, ledSpacing,
angle, zigzag && (i % 2) == 1);
}
}
// Set the location of 64 LEDs arranged in a uniform 8x8 grid.
// (x,y) is the center of the grid.
void ledGrid8x8(int index, float x, float y, float spacing, float angle, boolean zigzag)
{
ledGrid(index, 8, 8, x, y, spacing, spacing, angle, zigzag);
}
// Should the pixel sampling locations be visible? This helps with debugging.
// Showing locations is enabled by default. You might need to disable it if our drawing
// is interfering with your processing sketch, or if you'd simply like the screen to be
// less cluttered.
void showLocations(boolean enabled)
{
enableShowLocations = enabled;
}
// Enable or disable dithering. Dithering avoids the "stair-stepping" artifact and increases color
// resolution by quickly jittering between adjacent 8-bit brightness levels about 400 times a second.
// Dithering is on by default.
void setDithering(boolean enabled)
{
if (enabled)
firmwareConfig &= ~0x01;
else
firmwareConfig |= 0x01;
sendFirmwareConfigPacket();
}
// Enable or disable frame interpolation. Interpolation automatically blends between consecutive frames
// in hardware, and it does so with 16-bit per channel resolution. Combined with dithering, this helps make
// fades very smooth. Interpolation is on by default.
void setInterpolation(boolean enabled)
{
if (enabled)
firmwareConfig &= ~0x02;
else
firmwareConfig |= 0x02;
sendFirmwareConfigPacket();
}
// Put the Fadecandy onboard LED under automatic control. It blinks any time the firmware processes a packet.
// This is the default configuration for the LED.
void statusLedAuto()
{
firmwareConfig &= 0x0C;
sendFirmwareConfigPacket();
}
// Manually turn the Fadecandy onboard LED on or off. This disables automatic LED control.
void setStatusLed(boolean on)
{
firmwareConfig |= 0x04; // Manual LED control
if (on)
firmwareConfig |= 0x08;
else
firmwareConfig &= ~0x08;
sendFirmwareConfigPacket();
}
// Set the color correction parameters
void setColorCorrection(float gamma, float red, float green, float blue)
{
colorCorrection = "{ \"gamma\": " + gamma + ", \"whitepoint\": [" + red + "," + green + "," + blue + "]}";
sendColorCorrectionPacket();
}
// Set custom color correction parameters from a string
void setColorCorrection(String s)
{
colorCorrection = s;
sendColorCorrectionPacket();
}
// Send a packet with the current firmware configuration settings
void sendFirmwareConfigPacket()
{
if (pending == null) {
// We'll do this when we reconnect
return;
}
byte[] packet = new byte[9];
packet[0] = (byte)0x00; // Channel (reserved)
packet[1] = (byte)0xFF; // Command (System Exclusive)
packet[2] = (byte)0x00; // Length high byte
packet[3] = (byte)0x05; // Length low byte
packet[4] = (byte)0x00; // System ID high byte
packet[5] = (byte)0x01; // System ID low byte
packet[6] = (byte)0x00; // Command ID high byte
packet[7] = (byte)0x02; // Command ID low byte
packet[8] = (byte)firmwareConfig;
try {
pending.write(packet);
} catch (Exception e) {
dispose();
}
}
// Send a packet with the current color correction settings
void sendColorCorrectionPacket()
{
if (colorCorrection == null) {
// No color correction defined
return;
}
if (pending == null) {
// We'll do this when we reconnect
return;
}
byte[] content = colorCorrection.getBytes();
int packetLen = content.length + 4;
byte[] header = new byte[8];
header[0] = (byte)0x00; // Channel (reserved)
header[1] = (byte)0xFF; // Command (System Exclusive)
header[2] = (byte)(packetLen >> 8); // Length high byte
header[3] = (byte)(packetLen & 0xFF); // Length low byte
header[4] = (byte)0x00; // System ID high byte
header[5] = (byte)0x01; // System ID low byte
header[6] = (byte)0x00; // Command ID high byte
header[7] = (byte)0x01; // Command ID low byte
try {
pending.write(header);
pending.write(content);
} catch (Exception e) {
dispose();
}
}
// Automatically called at the end of each draw().
// This handles the automatic Pixel to LED mapping.
// If you aren't using that mapping, this function has no effect.
// In that case, you can call setPixelCount(), setPixel(), and writePixels()
// separately.
void draw()
{
if (pixelLocations == null) {
// No pixels defined yet
return;
}
if (output == null) {
return;
}
int numPixels = pixelLocations.length;
int ledAddress = 4;
setPixelCount(numPixels);
loadPixels();
for (int i = 0; i < numPixels; i++) {
int pixelLocation = pixelLocations[i];
int pixel = pixels[pixelLocation];
packetData[ledAddress] = (byte)(pixel >> 16);
packetData[ledAddress + 1] = (byte)(pixel >> 8);
packetData[ledAddress + 2] = (byte)pixel;
ledAddress += 3;
if (enableShowLocations) {
pixels[pixelLocation] = 0xFFFFFF ^ pixel;
}
}
writePixels();
if (enableShowLocations) {
updatePixels();
}
}
// Change the number of pixels in our output packet.
// This is normally not needed; the output packet is automatically sized
// by draw() and by setPixel().
void setPixelCount(int numPixels)
{
int numBytes = 3 * numPixels;
int packetLen = 4 + numBytes;
if (packetData == null || packetData.length != packetLen) {
// Set up our packet buffer
packetData = new byte[packetLen];
packetData[0] = (byte)0x00; // Channel
packetData[1] = (byte)0x00; // Command (Set pixel colors)
packetData[2] = (byte)(numBytes >> 8); // Length high byte
packetData[3] = (byte)(numBytes & 0xFF); // Length low byte
}
}
// Directly manipulate a pixel in the output buffer. This isn't needed
// for pixels that are mapped to the screen.
void setPixel(int number, color c)
{
int offset = 4 + number * 3;
if (packetData == null || packetData.length < offset + 3) {
setPixelCount(number + 1);
}
packetData[offset] = (byte) (c >> 16);
packetData[offset + 1] = (byte) (c >> 8);
packetData[offset + 2] = (byte) c;
}
// Read a pixel from the output buffer. If the pixel was mapped to the display,
// this returns the value we captured on the previous frame.
color getPixel(int number)
{
int offset = 4 + number * 3;
if (packetData == null || packetData.length < offset + 3) {
return 0;
}
return (packetData[offset] << 16) | (packetData[offset + 1] << 8) | packetData[offset + 2];
}
// Transmit our current buffer of pixel values to the OPC server. This is handled
// automatically in draw() if any pixels are mapped to the screen, but if you haven't
// mapped any pixels to the screen you'll want to call this directly.
void writePixels()
{
if (packetData == null || packetData.length == 0) {
// No pixel buffer
return;
}
if (output == null) {
return;
}
try {
output.write(packetData);
} catch (Exception e) {
dispose();
}
}
void dispose()
{
// Destroy the socket. Called internally when we've disconnected.
// (Thread continues to run)
if (output != null) {
println("Disconnected from OPC server");
}
socket = null;
output = pending = null;
}
public void run()
{
// Thread tests server connection periodically, attempts reconnection.
// Important for OPC arrays; faster startup, client continues
// to run smoothly when mobile servers go in and out of range.
for(;;) {
if(output == null) { // No OPC connection?
try { // Make one!
socket = new Socket(host, port);
socket.setTcpNoDelay(true);
pending = socket.getOutputStream(); // Avoid race condition...
println("Connected to OPC server");
sendColorCorrectionPacket(); // These write to 'pending'
sendFirmwareConfigPacket(); // rather than 'output' before
output = pending; // rest of code given access.
// pending not set null, more config packets are OK!
} catch (ConnectException e) {
dispose();
} catch (IOException e) {
dispose();
}
}
// Pause thread to avoid massive CPU load
try {
Thread.sleep(500);
}
catch(InterruptedException e) {
}
}
}
}

View File

@ -10,7 +10,7 @@ void setup() {
void draw() { void draw() {
background(0); background(0);
for (int i = 0; i < 8; i++) { for (int i = 0; i < 8; i++) {
opc.setPixel(i+8*0, color(255,0,0)); opc.setPixel(i+8*0, color(255,0,0));
opc.setPixel(i+8*1, color(0,255,0)); opc.setPixel(i+8*1, color(0,255,0));
@ -23,6 +23,11 @@ void draw() {
opc.setPixel(i+8*6, color(100,100,100)); opc.setPixel(i+8*6, color(100,100,100));
opc.setPixel(i+8*7, color(200,200,200)); opc.setPixel(i+8*7, color(200,200,200));
} }
//opc.setPixel(5, color(255,0,0));
//opc.setPixel(25, color(0,255,0));
//opc.setPixel(40, color(0,0,255));
opc.writePixels(); opc.writePixels();

370
IndividualColor/OPC.pde Executable file
View File

@ -0,0 +1,370 @@
/*
* Simple Open Pixel Control client for Processing,
* designed to sample each LED's color from some point on the canvas.
*
* Micah Elizabeth Scott, 2013
* This file is released into the public domain.
*/
import java.net.*;
import java.util.Arrays;
public class OPC implements Runnable
{
Thread thread;
Socket socket;
OutputStream output, pending;
String host;
int port;
int[] pixelLocations;
byte[] packetData;
byte firmwareConfig;
String colorCorrection;
boolean enableShowLocations;
OPC(PApplet parent, String host, int port)
{
this.host = host;
this.port = port;
thread = new Thread(this);
thread.start();
this.enableShowLocations = true;
parent.registerMethod("draw", this);
}
// Set the location of a single LED
void led(int index, int x, int y)
{
// For convenience, automatically grow the pixelLocations array. We do want this to be an array,
// instead of a HashMap, to keep draw() as fast as it can be.
if (pixelLocations == null) {
pixelLocations = new int[index + 1];
} else if (index >= pixelLocations.length) {
pixelLocations = Arrays.copyOf(pixelLocations, index + 1);
}
pixelLocations[index] = x + width * y;
}
// Set the location of several LEDs arranged in a strip.
// Angle is in radians, measured clockwise from +X.
// (x,y) is the center of the strip.
void ledStrip(int index, int count, float x, float y, float spacing, float angle, boolean reversed)
{
float s = sin(angle);
float c = cos(angle);
for (int i = 0; i < count; i++) {
led(reversed ? (index + count - 1 - i) : (index + i),
(int)(x + (i - (count-1)/2.0) * spacing * c + 0.5),
(int)(y + (i - (count-1)/2.0) * spacing * s + 0.5));
}
}
// Set the locations of a ring of LEDs. The center of the ring is at (x, y),
// with "radius" pixels between the center and each LED. The first LED is at
// the indicated angle, in radians, measured clockwise from +X.
void ledRing(int index, int count, float x, float y, float radius, float angle)
{
for (int i = 0; i < count; i++) {
float a = angle + i * 2 * PI / count;
led(index + i, (int)(x - radius * cos(a) + 0.5),
(int)(y - radius * sin(a) + 0.5));
}
}
// Set the location of several LEDs arranged in a grid. The first strip is
// at 'angle', measured in radians clockwise from +X.
// (x,y) is the center of the grid.
void ledGrid(int index, int stripLength, int numStrips, float x, float y,
float ledSpacing, float stripSpacing, float angle, boolean zigzag)
{
float s = sin(angle + HALF_PI);
float c = cos(angle + HALF_PI);
for (int i = 0; i < numStrips; i++) {
ledStrip(index + stripLength * i, stripLength,
x + (i - (numStrips-1)/2.0) * stripSpacing * c,
y + (i - (numStrips-1)/2.0) * stripSpacing * s, ledSpacing,
angle, zigzag && (i % 2) == 1);
}
}
// Set the location of 64 LEDs arranged in a uniform 8x8 grid.
// (x,y) is the center of the grid.
void ledGrid8x8(int index, float x, float y, float spacing, float angle, boolean zigzag)
{
ledGrid(index, 8, 8, x, y, spacing, spacing, angle, zigzag);
}
// Should the pixel sampling locations be visible? This helps with debugging.
// Showing locations is enabled by default. You might need to disable it if our drawing
// is interfering with your processing sketch, or if you'd simply like the screen to be
// less cluttered.
void showLocations(boolean enabled)
{
enableShowLocations = enabled;
}
// Enable or disable dithering. Dithering avoids the "stair-stepping" artifact and increases color
// resolution by quickly jittering between adjacent 8-bit brightness levels about 400 times a second.
// Dithering is on by default.
void setDithering(boolean enabled)
{
if (enabled)
firmwareConfig &= ~0x01;
else
firmwareConfig |= 0x01;
sendFirmwareConfigPacket();
}
// Enable or disable frame interpolation. Interpolation automatically blends between consecutive frames
// in hardware, and it does so with 16-bit per channel resolution. Combined with dithering, this helps make
// fades very smooth. Interpolation is on by default.
void setInterpolation(boolean enabled)
{
if (enabled)
firmwareConfig &= ~0x02;
else
firmwareConfig |= 0x02;
sendFirmwareConfigPacket();
}
// Put the Fadecandy onboard LED under automatic control. It blinks any time the firmware processes a packet.
// This is the default configuration for the LED.
void statusLedAuto()
{
firmwareConfig &= 0x0C;
sendFirmwareConfigPacket();
}
// Manually turn the Fadecandy onboard LED on or off. This disables automatic LED control.
void setStatusLed(boolean on)
{
firmwareConfig |= 0x04; // Manual LED control
if (on)
firmwareConfig |= 0x08;
else
firmwareConfig &= ~0x08;
sendFirmwareConfigPacket();
}
// Set the color correction parameters
void setColorCorrection(float gamma, float red, float green, float blue)
{
colorCorrection = "{ \"gamma\": " + gamma + ", \"whitepoint\": [" + red + "," + green + "," + blue + "]}";
sendColorCorrectionPacket();
}
// Set custom color correction parameters from a string
void setColorCorrection(String s)
{
colorCorrection = s;
sendColorCorrectionPacket();
}
// Send a packet with the current firmware configuration settings
void sendFirmwareConfigPacket()
{
if (pending == null) {
// We'll do this when we reconnect
return;
}
byte[] packet = new byte[9];
packet[0] = (byte)0x00; // Channel (reserved)
packet[1] = (byte)0xFF; // Command (System Exclusive)
packet[2] = (byte)0x00; // Length high byte
packet[3] = (byte)0x05; // Length low byte
packet[4] = (byte)0x00; // System ID high byte
packet[5] = (byte)0x01; // System ID low byte
packet[6] = (byte)0x00; // Command ID high byte
packet[7] = (byte)0x02; // Command ID low byte
packet[8] = (byte)firmwareConfig;
try {
pending.write(packet);
} catch (Exception e) {
dispose();
}
}
// Send a packet with the current color correction settings
void sendColorCorrectionPacket()
{
if (colorCorrection == null) {
// No color correction defined
return;
}
if (pending == null) {
// We'll do this when we reconnect
return;
}
byte[] content = colorCorrection.getBytes();
int packetLen = content.length + 4;
byte[] header = new byte[8];
header[0] = (byte)0x00; // Channel (reserved)
header[1] = (byte)0xFF; // Command (System Exclusive)
header[2] = (byte)(packetLen >> 8); // Length high byte
header[3] = (byte)(packetLen & 0xFF); // Length low byte
header[4] = (byte)0x00; // System ID high byte
header[5] = (byte)0x01; // System ID low byte
header[6] = (byte)0x00; // Command ID high byte
header[7] = (byte)0x01; // Command ID low byte
try {
pending.write(header);
pending.write(content);
} catch (Exception e) {
dispose();
}
}
// Automatically called at the end of each draw().
// This handles the automatic Pixel to LED mapping.
// If you aren't using that mapping, this function has no effect.
// In that case, you can call setPixelCount(), setPixel(), and writePixels()
// separately.
void draw()
{
if (pixelLocations == null) {
// No pixels defined yet
return;
}
if (output == null) {
return;
}
int numPixels = pixelLocations.length;
int ledAddress = 4;
setPixelCount(numPixels);
loadPixels();
for (int i = 0; i < numPixels; i++) {
int pixelLocation = pixelLocations[i];
int pixel = pixels[pixelLocation];
packetData[ledAddress] = (byte)(pixel >> 16);
packetData[ledAddress + 1] = (byte)(pixel >> 8);
packetData[ledAddress + 2] = (byte)pixel;
ledAddress += 3;
if (enableShowLocations) {
pixels[pixelLocation] = 0xFFFFFF ^ pixel;
}
}
writePixels();
if (enableShowLocations) {
updatePixels();
}
}
// Change the number of pixels in our output packet.
// This is normally not needed; the output packet is automatically sized
// by draw() and by setPixel().
void setPixelCount(int numPixels)
{
int numBytes = 3 * numPixels;
int packetLen = 4 + numBytes;
if (packetData == null || packetData.length != packetLen) {
// Set up our packet buffer
packetData = new byte[packetLen];
packetData[0] = (byte)0x00; // Channel
packetData[1] = (byte)0x00; // Command (Set pixel colors)
packetData[2] = (byte)(numBytes >> 8); // Length high byte
packetData[3] = (byte)(numBytes & 0xFF); // Length low byte
}
}
// Directly manipulate a pixel in the output buffer. This isn't needed
// for pixels that are mapped to the screen.
void setPixel(int number, color c)
{
int offset = 4 + number * 3;
if (packetData == null || packetData.length < offset + 3) {
setPixelCount(number + 1);
}
packetData[offset] = (byte) (c >> 16);
packetData[offset + 1] = (byte) (c >> 8);
packetData[offset + 2] = (byte) c;
}
// Read a pixel from the output buffer. If the pixel was mapped to the display,
// this returns the value we captured on the previous frame.
color getPixel(int number)
{
int offset = 4 + number * 3;
if (packetData == null || packetData.length < offset + 3) {
return 0;
}
return (packetData[offset] << 16) | (packetData[offset + 1] << 8) | packetData[offset + 2];
}
// Transmit our current buffer of pixel values to the OPC server. This is handled
// automatically in draw() if any pixels are mapped to the screen, but if you haven't
// mapped any pixels to the screen you'll want to call this directly.
void writePixels()
{
if (packetData == null || packetData.length == 0) {
// No pixel buffer
return;
}
if (output == null) {
return;
}
try {
output.write(packetData);
} catch (Exception e) {
dispose();
}
}
void dispose()
{
// Destroy the socket. Called internally when we've disconnected.
// (Thread continues to run)
if (output != null) {
println("Disconnected from OPC server");
}
socket = null;
output = pending = null;
}
public void run()
{
// Thread tests server connection periodically, attempts reconnection.
// Important for OPC arrays; faster startup, client continues
// to run smoothly when mobile servers go in and out of range.
for(;;) {
if(output == null) { // No OPC connection?
try { // Make one!
socket = new Socket(host, port);
socket.setTcpNoDelay(true);
pending = socket.getOutputStream(); // Avoid race condition...
println("Connected to OPC server");
sendColorCorrectionPacket(); // These write to 'pending'
sendFirmwareConfigPacket(); // rather than 'output' before
output = pending; // rest of code given access.
// pending not set null, more config packets are OK!
} catch (ConnectException e) {
dispose();
} catch (IOException e) {
dispose();
}
}
// Pause thread to avoid massive CPU load
try {
Thread.sleep(500);
}
catch(InterruptedException e) {
}
}
}
}

BIN
Presentation.pptx Normal file

Binary file not shown.

View File

@ -100,10 +100,10 @@ Lets try and set up an empty sketch using the template below:
OPC opc; OPC opc;
void setup() { void setup() {
size(500, 500, P3D); size(500, 500, P3D);
opc = new OPC(this, "127.0.0.1", 7890); opc = new OPC(this, "127.0.0.1", 7890);
opc.ledGrid8x8(0, width/2, height/2, height / 16.0, 0, false); opc.ledGrid8x8(0, width/2, height/2, height / 16.0, 0, false);
} }
void draw() { void draw() {