Solved 2024/12 P1
This commit is contained in:
parent
9d38fa31d7
commit
ac8bce83b9
210
2024/12/12.md
Normal file
210
2024/12/12.md
Normal file
@ -0,0 +1,210 @@
|
|||||||
|
## \-\-- Day 12: Garden Groups \-\--
|
||||||
|
|
||||||
|
Why not search for the Chief Historian near the [gardener](/2023/day/5)
|
||||||
|
and his [massive farm](/2023/day/21)? There\'s plenty of food, so The
|
||||||
|
Historians grab something to eat while they search.
|
||||||
|
|
||||||
|
You\'re about to settle near a complex arrangement of garden plots when
|
||||||
|
some Elves ask if you can lend a hand. They\'d like to set up
|
||||||
|
fences
|
||||||
|
around each region of garden plots, but they can\'t figure out how much
|
||||||
|
fence they need to order or how much it will cost. They hand you a map
|
||||||
|
(your puzzle input) of the garden plots.
|
||||||
|
|
||||||
|
Each garden plot grows only a single type of plant and is indicated by a
|
||||||
|
single letter on your map. When multiple garden plots are growing the
|
||||||
|
same type of plant and are touching (horizontally or vertically), they
|
||||||
|
form a *region*. For example:
|
||||||
|
|
||||||
|
AAAA
|
||||||
|
BBCD
|
||||||
|
BBCC
|
||||||
|
EEEC
|
||||||
|
|
||||||
|
This 4x4 arrangement includes garden plots growing five different types
|
||||||
|
of plants (labeled `A`, `B`, `C`, `D`, and `E`), each grouped into their
|
||||||
|
own region.
|
||||||
|
|
||||||
|
In order to accurately calculate the cost of the fence around a single
|
||||||
|
region, you need to know that region\'s *area* and *perimeter*.
|
||||||
|
|
||||||
|
The *area* of a region is simply the number of garden plots the region
|
||||||
|
contains. The above map\'s type `A`, `B`, and `C` plants are each in a
|
||||||
|
region of area `4`. The type `E` plants are in a region of area `3`; the
|
||||||
|
type `D` plants are in a region of area `1`.
|
||||||
|
|
||||||
|
Each garden plot is a square and so has *four sides*. The *perimeter* of
|
||||||
|
a region is the number of sides of garden plots in the region that do
|
||||||
|
not touch another garden plot in the same region. The type `A` and `C`
|
||||||
|
plants are each in a region with perimeter `10`. The type `B` and `E`
|
||||||
|
plants are each in a region with perimeter `8`. The lone `D` plot forms
|
||||||
|
its own region with perimeter `4`.
|
||||||
|
|
||||||
|
Visually indicating the sides of plots in each region that contribute to
|
||||||
|
the perimeter using `-` and `|`, the above map\'s regions\' perimeters
|
||||||
|
are measured as follows:
|
||||||
|
|
||||||
|
+-+-+-+-+
|
||||||
|
|A A A A|
|
||||||
|
+-+-+-+-+ +-+
|
||||||
|
|D|
|
||||||
|
+-+-+ +-+ +-+
|
||||||
|
|B B| |C|
|
||||||
|
+ + + +-+
|
||||||
|
|B B| |C C|
|
||||||
|
+-+-+ +-+ +
|
||||||
|
|C|
|
||||||
|
+-+-+-+ +-+
|
||||||
|
|E E E|
|
||||||
|
+-+-+-+
|
||||||
|
|
||||||
|
Plants of the same type can appear in multiple separate regions, and
|
||||||
|
regions can even appear within other regions. For example:
|
||||||
|
|
||||||
|
OOOOO
|
||||||
|
OXOXO
|
||||||
|
OOOOO
|
||||||
|
OXOXO
|
||||||
|
OOOOO
|
||||||
|
|
||||||
|
The above map contains *five* regions, one containing all of the `O`
|
||||||
|
garden plots, and the other four each containing a single `X` plot.
|
||||||
|
|
||||||
|
The four `X` regions each have area `1` and perimeter `4`. The region
|
||||||
|
containing `21` type `O` plants is more complicated; in addition to its
|
||||||
|
outer edge contributing a perimeter of `20`, its boundary with each `X`
|
||||||
|
region contributes an additional `4` to its perimeter, for a total
|
||||||
|
perimeter of `36`.
|
||||||
|
|
||||||
|
Due to \"modern\" business practices, the *price* of fence required for
|
||||||
|
a region is found by *multiplying* that region\'s area by its perimeter.
|
||||||
|
The *total price* of fencing all regions on a map is found by adding
|
||||||
|
together the price of fence for every region on the map.
|
||||||
|
|
||||||
|
In the first example, region `A` has price `4 * 10 = 40`, region `B` has
|
||||||
|
price `4 * 8 = 32`, region `C` has price `4 * 10 = 40`, region `D` has
|
||||||
|
price `1 * 4 = 4`, and region `E` has price `3 * 8 = 24`. So, the total
|
||||||
|
price for the first example is `140`.
|
||||||
|
|
||||||
|
In the second example, the region with all of the `O` plants has price
|
||||||
|
`21 * 36 = 756`, and each of the four smaller `X` regions has price
|
||||||
|
`1 * 4 = 4`, for a total price of `772` (`756 + 4 + 4 + 4 + 4`).
|
||||||
|
|
||||||
|
Here\'s a larger example:
|
||||||
|
|
||||||
|
RRRRIICCFF
|
||||||
|
RRRRIICCCF
|
||||||
|
VVRRRCCFFF
|
||||||
|
VVRCCCJFFF
|
||||||
|
VVVVCJJCFE
|
||||||
|
VVIVCCJJEE
|
||||||
|
VVIIICJJEE
|
||||||
|
MIIIIIJJEE
|
||||||
|
MIIISIJEEE
|
||||||
|
MMMISSJEEE
|
||||||
|
|
||||||
|
It contains:
|
||||||
|
|
||||||
|
- A region of `R` plants with price `12 * 18 = 216`.
|
||||||
|
- A region of `I` plants with price `4 * 8 = 32`.
|
||||||
|
- A region of `C` plants with price `14 * 28 = 392`.
|
||||||
|
- A region of `F` plants with price `10 * 18 = 180`.
|
||||||
|
- A region of `V` plants with price `13 * 20 = 260`.
|
||||||
|
- A region of `J` plants with price `11 * 20 = 220`.
|
||||||
|
- A region of `C` plants with price `1 * 4 = 4`.
|
||||||
|
- A region of `E` plants with price `13 * 18 = 234`.
|
||||||
|
- A region of `I` plants with price `14 * 22 = 308`.
|
||||||
|
- A region of `M` plants with price `5 * 12 = 60`.
|
||||||
|
- A region of `S` plants with price `3 * 8 = 24`.
|
||||||
|
|
||||||
|
So, it has a total price of `1930`.
|
||||||
|
|
||||||
|
*What is the total price of fencing all regions on your map?*
|
||||||
|
|
||||||
|
Your puzzle answer was `1437300`.
|
||||||
|
|
||||||
|
The first half of this puzzle is complete! It provides one gold star: \*
|
||||||
|
|
||||||
|
## \-\-- Part Two \-\-- {#part2}
|
||||||
|
|
||||||
|
Fortunately, the Elves are trying to order so much fence that they
|
||||||
|
qualify for a *bulk discount*!
|
||||||
|
|
||||||
|
Under the bulk discount, instead of using the perimeter to calculate the
|
||||||
|
price, you need to use the *number of sides* each region has. Each
|
||||||
|
straight section of fence counts as a side, regardless of how long it
|
||||||
|
is.
|
||||||
|
|
||||||
|
Consider this example again:
|
||||||
|
|
||||||
|
AAAA
|
||||||
|
BBCD
|
||||||
|
BBCC
|
||||||
|
EEEC
|
||||||
|
|
||||||
|
The region containing type `A` plants has `4` sides, as does each of the
|
||||||
|
regions containing plants of type `B`, `D`, and `E`. However, the more
|
||||||
|
complex region containing the plants of type `C` has `8` sides!
|
||||||
|
|
||||||
|
Using the new method of calculating the per-region price by multiplying
|
||||||
|
the region\'s area by its number of sides, regions `A` through `E` have
|
||||||
|
prices `16`, `16`, `32`, `4`, and `12`, respectively, for a total price
|
||||||
|
of `80`.
|
||||||
|
|
||||||
|
The second example above (full of type `X` and `O` plants) would have a
|
||||||
|
total price of `436`.
|
||||||
|
|
||||||
|
Here\'s a map that includes an E-shaped region full of type `E` plants:
|
||||||
|
|
||||||
|
EEEEE
|
||||||
|
EXXXX
|
||||||
|
EEEEE
|
||||||
|
EXXXX
|
||||||
|
EEEEE
|
||||||
|
|
||||||
|
The E-shaped region has an area of `17` and `12` sides for a price of
|
||||||
|
`204`. Including the two regions full of type `X` plants, this map has a
|
||||||
|
total price of `236`.
|
||||||
|
|
||||||
|
This map has a total price of `368`:
|
||||||
|
|
||||||
|
AAAAAA
|
||||||
|
AAABBA
|
||||||
|
AAABBA
|
||||||
|
ABBAAA
|
||||||
|
ABBAAA
|
||||||
|
AAAAAA
|
||||||
|
|
||||||
|
It includes two regions full of type `B` plants (each with `4` sides)
|
||||||
|
and a single region full of type `A` plants (with `4` sides on the
|
||||||
|
outside and `8` more sides on the inside, a total of `12` sides). Be
|
||||||
|
especially careful when counting the fence around regions like the one
|
||||||
|
full of type `A` plants; in particular, each section of fence has an
|
||||||
|
in-side and an out-side, so the fence does not connect across the middle
|
||||||
|
of the region (where the two `B` regions touch diagonally). (The Elves
|
||||||
|
would have used the Möbius Fencing Company instead, but their contract
|
||||||
|
terms were too one-sided.)
|
||||||
|
|
||||||
|
The larger example from before now has the following updated prices:
|
||||||
|
|
||||||
|
- A region of `R` plants with price `12 * 10 = 120`.
|
||||||
|
- A region of `I` plants with price `4 * 4 = 16`.
|
||||||
|
- A region of `C` plants with price `14 * 22 = 308`.
|
||||||
|
- A region of `F` plants with price `10 * 12 = 120`.
|
||||||
|
- A region of `V` plants with price `13 * 10 = 130`.
|
||||||
|
- A region of `J` plants with price `11 * 12 = 132`.
|
||||||
|
- A region of `C` plants with price `1 * 4 = 4`.
|
||||||
|
- A region of `E` plants with price `13 * 8 = 104`.
|
||||||
|
- A region of `I` plants with price `14 * 16 = 224`.
|
||||||
|
- A region of `M` plants with price `5 * 6 = 30`.
|
||||||
|
- A region of `S` plants with price `3 * 6 = 18`.
|
||||||
|
|
||||||
|
Adding these together produces its new total price of `1206`.
|
||||||
|
|
||||||
|
*What is the new total price of fencing all regions on your map?*
|
||||||
|
|
||||||
|
Answer:
|
||||||
|
|
||||||
|
Although it hasn\'t changed, you can still [get your puzzle
|
||||||
|
input](12/input).
|
||||||
|
|
132
2024/12/solution.py
Normal file
132
2024/12/solution.py
Normal file
@ -0,0 +1,132 @@
|
|||||||
|
#!/bin/python3
|
||||||
|
import sys,time,re
|
||||||
|
from pprint import pprint
|
||||||
|
sys.path.insert(0, '../../')
|
||||||
|
from fred import list2int,get_re,nprint,lprint,loadFile,toGrid,bfs,get_value_in_direction,addTuples
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
input_f = 'test'
|
||||||
|
|
||||||
|
#########################################
|
||||||
|
# #
|
||||||
|
# Part 1 #
|
||||||
|
# #
|
||||||
|
#########################################
|
||||||
|
|
||||||
|
def get_neighbors(grid,node,visited):
|
||||||
|
#print('@',node,' - Visited',visited)
|
||||||
|
|
||||||
|
directions = ['up','down','left','right']
|
||||||
|
offsets = {
|
||||||
|
'up': (-1, 0),
|
||||||
|
'down': (1, 0),
|
||||||
|
'left': (0, -1),
|
||||||
|
'right': (0, 1),
|
||||||
|
}
|
||||||
|
neighbors = []
|
||||||
|
for d in directions:
|
||||||
|
t = get_value_in_direction(grid,node)
|
||||||
|
if get_value_in_direction(grid,node,d) == t:
|
||||||
|
n = addTuples(offsets[d],node)
|
||||||
|
if n not in visited:
|
||||||
|
neighbors.append(n)
|
||||||
|
#print(n)
|
||||||
|
visited.append(n)
|
||||||
|
neighbors+=get_neighbors(grid,n,visited)
|
||||||
|
return neighbors
|
||||||
|
|
||||||
|
def part1():
|
||||||
|
grid = toGrid(input_f)
|
||||||
|
|
||||||
|
#nprint(grid)
|
||||||
|
values = {}
|
||||||
|
visited = []
|
||||||
|
total_plots = []
|
||||||
|
for r,row in enumerate(grid):
|
||||||
|
for c,col in enumerate(row):
|
||||||
|
pos = (r,c)
|
||||||
|
plot = []
|
||||||
|
current = get_value_in_direction(grid,pos)
|
||||||
|
if pos not in visited:
|
||||||
|
|
||||||
|
x = get_neighbors(grid,pos,visited)
|
||||||
|
plot += x
|
||||||
|
if pos not in plot:
|
||||||
|
plot.append(pos)
|
||||||
|
if current not in values:
|
||||||
|
values[current] = []
|
||||||
|
|
||||||
|
total_plots.append(plot)
|
||||||
|
|
||||||
|
directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
|
||||||
|
result = 0
|
||||||
|
|
||||||
|
for v in total_plots:
|
||||||
|
|
||||||
|
sides = 0
|
||||||
|
for x,y in v:
|
||||||
|
|
||||||
|
for dx, dy in directions:
|
||||||
|
neighbor = (x + dx, y + dy)
|
||||||
|
if neighbor in v:
|
||||||
|
sides += 1
|
||||||
|
|
||||||
|
total_sides = len(v) * 4 - sides
|
||||||
|
|
||||||
|
result += (total_sides*len(v))
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
print('Part 1:',part1(), '\t\t', round((time.time() - start_time)*1000), 'ms')
|
||||||
|
|
||||||
|
|
||||||
|
#########################################
|
||||||
|
# #
|
||||||
|
# Part 2 #
|
||||||
|
# #
|
||||||
|
#########################################
|
||||||
|
def part2():
|
||||||
|
grid = toGrid(input_f)
|
||||||
|
|
||||||
|
#nprint(grid)
|
||||||
|
values = {}
|
||||||
|
visited = []
|
||||||
|
total_plots = []
|
||||||
|
for r,row in enumerate(grid):
|
||||||
|
for c,col in enumerate(row):
|
||||||
|
pos = (r,c)
|
||||||
|
plot = []
|
||||||
|
current = get_value_in_direction(grid,pos)
|
||||||
|
if pos not in visited:
|
||||||
|
|
||||||
|
x = get_neighbors(grid,pos,visited)
|
||||||
|
plot += x
|
||||||
|
if pos not in plot:
|
||||||
|
plot.append(pos)
|
||||||
|
if current not in values:
|
||||||
|
values[current] = []
|
||||||
|
|
||||||
|
total_plots.append(plot)
|
||||||
|
|
||||||
|
directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
|
||||||
|
result = 0
|
||||||
|
|
||||||
|
for v in total_plots:
|
||||||
|
|
||||||
|
sides = 0
|
||||||
|
for x,y in v:
|
||||||
|
|
||||||
|
for dx, dy in directions:
|
||||||
|
neighbor = (x + dx, y + dy) # Instead of finding all the neighbors, check if
|
||||||
|
if neighbor in v:
|
||||||
|
print(neighbor)
|
||||||
|
sides += 1
|
||||||
|
print()
|
||||||
|
total_sides = len(v) * 4 - sides
|
||||||
|
|
||||||
|
result += (total_sides*len(v))
|
||||||
|
return result
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
print('Part 2:',part2(), '\t\t', round((time.time() - start_time)*1000), 'ms')
|
@ -16,7 +16,7 @@ def part1():
|
|||||||
return
|
return
|
||||||
|
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
print('Part 2:',part1(), '\t\t', round((time.time() - start_time)*1000), 'ms')
|
print('Part 1:',part1(), '\t\t', round((time.time() - start_time)*1000), 'ms')
|
||||||
|
|
||||||
|
|
||||||
#########################################
|
#########################################
|
||||||
|
Loading…
Reference in New Issue
Block a user